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Broad-Band Simultaneous Measurement of
Complex Permittivity and Permeability

Using a Coaxial Discontinuity

NOUR-EDDINE BELHADJ-TAHAR, ARLETTE FOURRIER-LAMER,

AND HELIE DE CHANTERAC

Abstract —A technique is presented for simultaneously measuring the

reaf and imaginary parts of both permittivity and permeability of a given

material. A gap in a coaxial line is filled with the material under test.

Complex permittivity and permeability are computed from the S-paramet-

er (S1, and S21) measurement made on the gap taking iuto account higher

order modes excited at the diseontinnity. Measured c, and p, data for

several materials are presented from 45 MHz up to 18 GHx. This

technique shows good agreement between cafcrrlated and generally ac-

cepted values.

I. INTRODUCTION

w

MEROUS MEASURING methods applicable to

ranges of values for permittivity and permeability and

to different frequency bands have been developed by the

American Society for Testing and Materials and by various

authors [1]–[3]. With the advent of automated vector net-

work analyzers and calculators, broad-band measurements

have been developed. Weir [4] uses complex reflection and

transmission coefficients presented when a sample of ma-

terial to be tested is inserted into a waveguide or a trans-

mission line propagating the TEM mode. This method,

adopted by Barry [5] in stripline technology, is nevertheless

limited in frequency. The increase in frequency in fact is

limited by the appearance of resonance phenomena due to

the size of the sample and to the presence of higher order

modes which are not taken into account in the theoretical

formulation of the problem. The method wherein a preci-

sion air line is filled with a test specimen is unusual for

relatively high ~’ and p’ ( > 20) and high frequencies.

Sucher [3] shows that air gap errors near inner and outer

conductors become increasingly serious with increasing

dielectric constant. In the measurement of ceramics in an

APC7-mm precision air line (6’= 10), for example, the

measured c’ is about 4.7 for dimensional tolerances of

*0.01 mm.

The solution presented here uses an inner coaxial con-

ductor discontinuity into which the sample to be measured

is easily inserted. The electromagnetic analysis of the struc-

ture (direct problem) is valid irrespective of the size of the
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sample and the working frequency. The uncertainty due to

an error in sample dimensions is not a main factor for this

method. For this study we used “mode matching,” the

same method used previously [6] to define the different

modes excited by the discontinuity. The calculation of c,

and p, from S1l and Szl measurements (inverse problem)

is linked tcl two infinite systems of simultaneous equations.

We demonstrate that this problem is reduced to two sys-

tems, each containing three equations with three un-

knowns. Computer time is therefore reasonable without

affecting accuracy.

H. DIRECT PROBLEM

A. Formulation of the Problem

We examine the structure shown in Fig. 1. The interrup-

tion of the inner conductor of the coaxial line constitutes a

circular waveguide filled with a homogeneous and isotropic

material. The sample, of thickness 2d, shows complex

perrnittivity and permeability:

c,=c’—je” (1)

p.= p’– jp,”. (2)

The coaxial line is much longer then the transverse dimen-

sions. It is filled with air and propagates the TEIV[ mode

only. Moreover the conductors are assumed to be perfect.

At planes T1 and T2 (the air-material interfaces) the

sample can be represented as a quadruple characterized

by its [Y]l and [S] matrices [1]. The admittances are

normalized in relation to the characteristic admittance of

the coaxiall line. Given that the structure is symmetrical,

the representations used are also symmetrical (Fig,, 1). In

this case the relationships between the elements of the

admittance matrix and those of the scattering matrix are

easily obtained:

l–y11(y11+2y12)

’11= ’22 = (1+ J+,)(1+ y,, +2y12)
(3)

2Y12

“1= “2= (1+ yl,)(l+ yl, +2y,,) “
(4)

Let us alpply the bisection theorem to the sample and to

the quadruple. In the presence of an electric wall placed
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at plane T, the normalized input admittance at plane T1 is

Y,=Yll+~Y12- (5)

If a magnetic wall is next placed at plane T, the input

admittance is

Ym = Y1l. (6)

As a result, (3) and (4) can be written

1 – Y?71-?J,
S,, =’S22= (l+ym)(l+ Ye)

s,, = S12 = (~ +;m;(:+ Ye) “

(7)

(8)

Equations (7) and (8) enable us to link the measurements

of the S parameters to the electric and magnetic properties

of the material placed in the cell. To calculate the input

impedances ye and yfil we used the same electromagnetic

analysis as before [6].

Let us consider a TEM wave propagating in region A of

Fig. 2. The cylindrical symmetry enables us to predict that

only E modes independent of the azimuthal angle @ will

be excited at the z = O plane. To be unhampered by the

line excitation method, we take a length of coaxial line

which is much longer than the transverse dimensions so

that the higher order modes created by the source are not

superposed on the higher order modes excited by the

discontinuity.

In the air-filled region xl, the components of the total

electromagnetic field are

Ey~ =

EZ~ =

H+~ =

~AO(exp+ jkoz + rexp– jkoz)

+ f ~q4(i’q~) ewyqz
~=1

i ~q$ZO({q~)fW- YqZ
~=1 q

1
~AoY~O(exp+ jkoz – 17exp– jkoz)

(9)

(lo)

+ 5 ~qLq-L(J’q~)exp–YqZ (11)
~=1

where A. represents the incidents TEM wave amplitude

and r its reflection coefficient at plane T1 of the disconti-

nuity; YAOand YAfl are respectively the wave admittances

of the TEM mode”’ and the higher order mode Eoq in the

coaxial waveguide:

with

(12)

(13)

(14)

In (9), (10), and (11), 2P denotes the linear combination of

the pth-order Bessel functions of the first and second

kinds as follows:

2,({,’) =q{,’)+ Gq~,((q’) withp=Oorl.

(16)

When an electric wall is placed at plane T, the electric

field boundary conditions at this plane provide the solu-

tions for region B:

E,~= ~ B:.Tl(A,r)shy, (z+d) (17)
~=1

‘,B= ~ A’; Jo(b Oh(z+d (18)
/=1 z



BELHADJ-TAHAR et U/.: MEASUREMENT OF COMPLEX PERMITTIVITY AND PERMEABILITY 3

with

and

Using Lonunel integrals and equalities (26), (27), (22),

and (23), we obtain
y, = /~- (20)

2Jo(x,b)
~~ = ‘0(1+ ‘) A2a2Jj(~j~)

& 1

The axial component E, for the electric field for each E

wave must be zero at the conductors in the two regions.

The following conditions are thus obtained: Next, H+B is integrated over the range b < r < a. Rela-

.%@) = .%({,b) = O (22)
tions (28), (22), and (23) give

.Jo(Aia) =0. (23)

Relation (22) enables us to determine the coefficient G~~

contained in (16):

and thus from the transcendental equation (25), the coeffi-

cient (~:

The last step is to integrate the quantity rZ1({nr)Ho~

over the range b < r < a. Hence

(34)

Jo(~,~)%(L#)-.L({qb)%({qa)= 0. (25) The normalized input admittance ~_i~the plane TI may

The matching conditions for the transverse components
be written in the following form: ~. Equations (32)

at the plane TI are expressed in the following manner: and (33) adlow us derive the solution:

E,~ = O, O<r<b (26) 2koacr ~ J;(~;b)coth[(Xa2- k2a2)1’2d/a]
y=. j—7

(A:a* - k*a*)’/2AyY:(A#z)

E,~= ~ Bj.ll(A,r) = ~Ao(l+ I’)+ ~ AqZ1({qr),
1]1; 2=1

,=1 q=l

b<r<a (27)

[

Aq bZ&b)
.l– E

)@ ‘O(l+ r)” f~/~t–l “

(35)

H+, = 5 B, Ye, J1(Air) = +AoY~o(l – I’)
,=1 or, alternatively,

cc

‘=-=j-(’o-:fix)’36)
b<r<a (28)

assuming that
where

B;= B;shyzd

and

(29) coth[(~~a=– k2a2)1’2d/a] J~(A,b)
y.= :~

,(:1 @a~_k&)l/2~’=a2 “ .J~(A,aJ (37)
1 1

Aq

‘q= Ao(l+r)
“bZ&b) (38)

Coefficients A ~ and B, are determined by using the
[

coth (A; a 2 – k*a*)l’2d/a] .l/(Aib)

orthogonality properties of Bessel functions. The first step Yq=– E *
,SI (A a2-k2a2

is to perform the following integral: z
)1/2(A~a2-{~a2) “ ‘;(AU) “

(39)

(31)
The coefficients x~ are obtained from (34) using relations
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(32), (30), and (13). This leads to the matrix equation

1

‘* [a2z:({”a) -11;” 4({~a2 – k~a2)1’2 “z~(~nb)

[
2- k2a2)112d/a] J~(AZb)

=1:, - &:; ;2
)’/2(A~a2-{~a2) ‘ ‘~(Aa)1

[
A~a2coth (A~a2– k’s’

-:~xq
)12d/a] J;(A,b)

(A~a2-k2a2)1/2( A~a2-{~a2)(A~a2 -{~a2) “ JI’(~a)
(40)

I=lq=l

or

f Aq,,xq = Y., ~=l,z,... (41)
9=1

assuming that

[h~a’coth (A~a2–k2a2
Aqn = ~

)1/2d/a]

,=1 (A2a2-k2a2 )1/2(A~a2-{#2)(A~a2-~~a2)1

J;(A{b) 1
+—

J~(A,a)
( 69” ) [a2z;({na)-11~r4fja’—k~a21’2b2Z~({nb)

(42)

where 89. is the Kronecker symbol.

If a magnetic wall is placed in the bisection plane T, the

total electromagnetic field in region B is

E,~= ~ B;’J1(A,r)chy, (z+d) (43)
,=1

Ez~= ~ l?;’> JO(AZr)shy, (z+d) (44)
,=1 1

At the reference plane 7’1 these components can be

written as follows:

E,~ = j B, J1(A,r) (46)
1=1

H4B = ~ B, Y~,Jl(A,r) (48)
,=]

with

B, = B;’ chy,d (49)

and

Y.,, = - ~ (A’ :3/’ .th[(A; –k’)1’’d]. (50)

[

Hence the same procedure is adopted to calculate the

input admittance y~,. We find the same results in replacing

coth ( ) with th ( ) in (26) to (42):

‘m=’%[y’-:l;’x’l “1)
b

B. Numerical Computation

The S-parameter computation starts with the evaluation

of quantities A, and {g from a Bessel subroutine. The roots

of the transcendental equations (23) and (25) are found by

iteration. It can be shown that all these roots (A, and (q)

are real, even in the lossy case (lossy materials in region B)

and so the arguments of the calculated Bessel functions are

real. These functions are programmed in the polynomial

approximations from [7] with an absolute accuracy of

10-8. Hence for a given frequency and for a material of

known properties, coefficients y. and yl can be computed

in the two cases of electric and magnetic walls if the

summation over i is truncated. In fact, this truncation

recurs to retaining a finite number of higher order modes

excited by the discontinuity and present in the sample

(i=l,2,..., 1). In the same manner, to compute the coef-

ficient Aqn we retain Q higher order modes excited in the

coaxial waveguide by the discontinuity. Hence (41) is

reduced to two systems of Q equations with Q unknowns

Xq (q=l,2,... , Q). From this, y, and yn values are

obtained. Since the value of Q governs the number of

simultaneous equations to be solved, it is clear that, for a

solution of given accuracy, there will be a considerable

saving of computer time and storage if the ratio 1/Q is

correctly chosen. The effect on the admittance computa-

tion accuracy of the number of higher order modes re-

tained has been described in [8]. We show that the accu-

racy is better than 0.1 percent if we take 1 = 2Q = 6.

Investigations on the rate of convergence for different

values of I and Q used in the mode-matching method

have been reported by other authors [9], [10]. These studies

show that the convergence rate of the reflection coefficient

is improved when the ratio 1/Q corresponds to the ratio of

the cross-sectional areas of the waveguides on either side

of the junction and that the convergence is sufficient after

only three modes in the small waveguide. Hence all our

computations are performed with I = 6 and Q = 3. An

example is depicted in Figs. 3 and 4. Theoretical and

measured values of Sll and S21 are presented between 45

MHz and 18 GHz for an APC7 millimeter cell filled with

air (2d = 0.85 mm).
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we define an error vector AS+ in the following manner:

r
SJ;;) _ s(c)

11X 1
(53)

where the superscripts m and c denote respectively the

measured and calculated S parameters in rectangular co-

ordinates. At the AS vector we associated a second vector

Ad as follows:

A~= [D]A@ (54)

where the matrix [D] is defined as the derivative matrix:

Fig. 3. Real and imaginary parts of the S1l parameter for the gap filled
with air in APC7 millimeter coaxiaf waveguide fifled with air; 2d = 0.85
mm. (.) Experimental data. ––––– Theoretical data.
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Fig. 4. Real and imaginary parts of the S21 parameter for the gap filled
with air in APC7 millimeter coaxiaf waveguide filled with air; 2d = 0.85

mm. (.) Experimental data. ––––– Theoretical data.

III. INVERSE PROBLEM

This section involves the complex permittivity and per-

meability computation from S-parameter measurements of

the gap filled by the sample. To avoid contact resistances

and contact capacitances, the sample is metallized on the

contact surfaces with the line conductors. Numerical com-

putations are performed with the HP 9000 series 300

desktop computer.

The simultaneous classification of c,= ~’ – jc” and p,=

p’ – jp” is carried out by comparison between measured

and calculated Sll and Szl values. For this purpose we use

an iterative method derived from the gradient method. For

any initial vector,

rc’l
(52)

as21x as21x as21y— — —
ad 8C,, ap’

8S21, 8s21, a%.”

ad --jj7- ap’

apt’
ash,
apf’”
as21x
ap’f
as21y
apt’

(55)

and

[1
Ac’
AC,,

A~= Ap, .

Ap,,

(56)

The value of the Ad vector is obtained from the inverse

matrix [D] -1 as follows:

Ad= [D]-l.A~ (57)

The new direction of investigation is now

ralAc’1

II
(I2 Ae”

Fn=q.l+ (58)
(X3Ap’

(X4Ap”

where the ai coefficients are equal to 0.8 at maximum. The

choice of the coefficients ai is performed to give fast

convergence. The iterations are stopped when IIAS~l 2 is

lower than 10-8. This value is fixed by the accuracy of the

network analyzer. The calculated c. and P. values become

the initial values for the next measured point. The typical

computation time for an experimental frequency point is

lower than 1 minute.

IV. EXPERIMENTAL lWSULTS

The results of the measurements on Teflon and alumina

are represented in Figs. 5, 6, 7, and 8. The measurements

performed on each of these materials were obtained at

room temperature using the HP 8510A network analyzer

in APC7 millimeter standard. The thickness of the Teflon

sample w~as4.4 mm, and that of the alumina was 4 mm.

These two materials show c’ values of 2.1 [5] and 9.8 [11]
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Fig. 5. Complex permittivity measured for a Teflon sample in the 45

MHz–18 GHz frequency range; thickness =4.4 mm; APC7-mm
standard.
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Fig. 6. Complex permeability measured forthe Teflon smpleinthe45
MHz–18 GHz frequency range; thickness =4,4 mm; APC7-mm
standard.
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Fig. 7. Complex permittivity measured form dutinasample inthe45

MHz–18 GHz frequency range: thickness=4 mm: APC7-mm
standard.

respectively and very low losses (t” is lower than 0.0004

for Teflon [2] and than 0.001 for alumina). They are

nonmagnetic and have a relative permeability of 1. The

values measured, depicted in Figs. 5 to 8, correspond to

those anticipated. However, because of the large errors in

small c“ and p“, the measurement of low-loss samples is

difficult with this technique. To obtain reasonable accu-

racy. c” and p“ should be greater than 0.1. At very low

frequencies, the value of p, for nonmagnetic materials

cannot be evaluated with accuracy due to residual mis-

-1

-2 L_ —.—

0 5 10 15

FREQUENCY (G Hz)

Fig. 8. Complex perrneabihty measured for the afumina sample in the
45 MIE-18 GHz frequency range; thickness= 4 mm; APC7-mm

standard.
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Fig. 9. Complex permittivity and permeabihty for the magnetite Fe304.
The sample is powder compacted at 3.5 metric tons.

match errors. As one may expect, examination of (35) and

(51) shows that p, is involved in the difference between

A~a 2 and k2a 2 only, in contrast to c,, which appears in

this difference and as a multiplicative term in (35) and

(51). For the very low frequencies, k is smaller than Al

and the p, measurement for nonmagnetic material be-

comes difficult. The instrumentation errors depend on the

magnitudes of Sll and S21. The magnitude and phase

errors for Sll increase when \Sill approaches zero. The

magnitude and phase errors for S21 increase when IS21I is

lower than 0.1. As [S211 is usually lower than 0.1 for

frequencies below 1 GHz, the maximum error for p, oc-

curs in this band of frequencies. For Teflon and alumina

samples, the length is selected to give S’ll and Szl of equal

magnitudes, which achieves greatest accuracy.

The accuracy of the method was computed by simula-

tion on a calculator. The calculator, programmed for the

HP851OA system instrumentation errors, and the measure-

ments of the Sll and S21 values enable the measuring

errors in c, and p, to be determined. At the lower end of

the frequency range, the permeability accuracy depends on

the permittivity values and is better than 10 percent for

higher values of c’ (c’> 5). This accuracy increases with

frequency and the sample thickness and is better than 5

percent above 5 GHz. The permittivity accuracy is practi-

cally constant and is equal to 2 percent. The uncertainty
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for c, and p, caused by a small error in the physical length

of the sample is practically equal to the percentage of the

error. As it is easy to measure the sample length to an

accuracy within +0.01 mm, the uncertainty due to an

error in the length of the sample material is not a main

factor for this measurement method.

The permittivity and permeability of the magnetite Fe304

were measured with this technique (2d = 1 mm). The sam-

ple is powder compacted at a pressure of 3.5 metric tons

for one minute. The measurement results appear in Fig. 9.

V. CONCLUSION: EXTENDING THE METHOD TO

MILLIMETER WAVES

A broad-band technique is presented for simultaneously

measuring the real and imaginary parts of both the perrnit-

tivit y and permeability of a given material. The material

under test fills a gap in a coaxial line. To avoid contact

resistances and contact capacitances, the sample is metal-

lized on the contact surfaces with the line conductors.

Required dimensional tolerances are 0.01 mm. The values

of c, and p, are computed from measurements of Sll and

S21 made on an automated network analyzer. This method

is easy to use and requires no corrections in experimental

results. With a single sample, it allows continuous charac-

terization up to 18 GHz. By using APC2.4 millimeter

connections, the method can be extended up to 50 GHz.

Consequently magnetic materials can be studied at mil-

limeter wavelengths.
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